博客
关于我
Python基于TensorFlow深度学习卷积神经网络自动识别网站验证码设计
阅读量:166 次
发布时间:2019-02-27

本文共 431 字,大约阅读时间需要 1 分钟。

开发环境:Pycharm + Python3.7 + Django2.2 + SQLite数据库 + TensorFlow深度学习框架 + Selenium自动化测试

基于深度网络的网站验证码识别研究与实现

本项目利用卷积神经网络(CNN)基于TensorFlow平台,构建了一个三层卷积两层全联接的模型,训练出准确率达到91.3%的验证码识别模型。同时,基于Django构建了一个登录系统,并结合Selenium实现了自动化测试,完成了从验证码识别到自动登录的全流程。

模型结构采用传统的CNN架构,包括卷积层、池化层和全连接层。通过对训练数据的多轮训练,模型能够准确识别验证码,并且在实际应用中表现稳定。Django框架用于构建用户登录界面,Selenium则用于实现自动化测试,确保验证码识别系统的稳定性和可靠性。

项目整体完成了从图像识别到自动化登录的全过程,验证了深度学习技术在验证码识别中的有效性,同时也验证了Django和Selenium的可靠性。

转载地址:http://gcmf.baihongyu.com/

你可能感兴趣的文章
No module named cv2
查看>>
No module named tensorboard.main在安装tensorboardX的时候遇到的问题
查看>>
No module named ‘MySQLdb‘错误解决No module named ‘MySQLdb‘错误解决
查看>>
No new migrations found. Your system is up-to-date.
查看>>
No qualifying bean of type XXX found for dependency XXX.
查看>>
No resource identifier found for attribute 'srcCompat' in package的解决办法
查看>>
No toolchains found in the NDK toolchains folder for ABI with prefix: mips64el-linux-android
查看>>
NO.23 ZenTaoPHP目录结构
查看>>
NO32 网络层次及OSI7层模型--TCP三次握手四次断开--子网划分
查看>>
NoClassDefFoundError: org/springframework/boot/context/properties/ConfigurationBeanFactoryMetadata
查看>>
Node JS: < 一> 初识Node JS
查看>>
Node-RED中使用JSON数据建立web网站
查看>>
Node-RED中使用json节点解析JSON数据
查看>>
Node-RED中使用node-red-browser-utils节点实现选择Windows操作系统中的文件并实现图片预览
查看>>
Node-RED中使用Notification元件显示警告讯息框(温度过高提示)
查看>>
Node-RED中实现HTML表单提交和获取提交的内容
查看>>
Node.js 函数是什么样的?
查看>>
Node.js 实现类似于.php,.jsp的服务器页面技术,自动路由
查看>>
node.js 怎么新建一个站点端口
查看>>
Node.js 文件系统的各种用法和常见场景
查看>>