博客
关于我
Python基于TensorFlow深度学习卷积神经网络自动识别网站验证码设计
阅读量:166 次
发布时间:2019-02-27

本文共 431 字,大约阅读时间需要 1 分钟。

开发环境:Pycharm + Python3.7 + Django2.2 + SQLite数据库 + TensorFlow深度学习框架 + Selenium自动化测试

基于深度网络的网站验证码识别研究与实现

本项目利用卷积神经网络(CNN)基于TensorFlow平台,构建了一个三层卷积两层全联接的模型,训练出准确率达到91.3%的验证码识别模型。同时,基于Django构建了一个登录系统,并结合Selenium实现了自动化测试,完成了从验证码识别到自动登录的全流程。

模型结构采用传统的CNN架构,包括卷积层、池化层和全连接层。通过对训练数据的多轮训练,模型能够准确识别验证码,并且在实际应用中表现稳定。Django框架用于构建用户登录界面,Selenium则用于实现自动化测试,确保验证码识别系统的稳定性和可靠性。

项目整体完成了从图像识别到自动化登录的全过程,验证了深度学习技术在验证码识别中的有效性,同时也验证了Django和Selenium的可靠性。

转载地址:http://gcmf.baihongyu.com/

你可能感兴趣的文章
node.js安装方法
查看>>
Node.js官网无法正常访问时安装NodeJS的方法
查看>>
node.js模块、包
查看>>
node.js的express框架用法(一)
查看>>
Node.js的交互式解释器(REPL)
查看>>
Node.js的循环与异步问题
查看>>
Node.js高级编程:用Javascript构建可伸缩应用(1)1.1 介绍和安装-安装Node
查看>>
nodejs + socket.io 同时使用http 和 https
查看>>
NodeJS @kubernetes/client-node连接到kubernetes集群的方法
查看>>
NodeJS API简介
查看>>
Nodejs express 获取url参数,post参数的三种方式
查看>>
nodejs http小爬虫
查看>>
nodejs libararies
查看>>
nodejs npm常用命令
查看>>
nodejs npm常用命令
查看>>
Nodejs process.nextTick() 使用详解
查看>>
NodeJS yarn 或 npm如何切换淘宝或国外镜像源
查看>>
nodejs 中间件理解
查看>>
nodejs 创建HTTP服务器详解
查看>>
nodejs 发起 GET 请求示例和 POST 请求示例
查看>>